ntnu.noPublications
ReferencesLink to record
Permanent link

Direct link
A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions
2004 In: Journal of Computational Physics, Vol. 197, no 1, 364-386Artikel i tidskrift (Refereed) Published
Place, publisher, year, pages
2004. Vol. 197, no 1, 364-386
Identifiers
urn:nbn:no:ntnu:diva-4208 (URN)oai:DiVA.org:ntnu-4208 (OAI)
Available from2004-11-19 Created:2004-11-19Bibliographically approved
In thesis
1. An immersed interface method for two-dimensional modelling of stratified flow in pipes
Open this publication in new window or tab >>An immersed interface method for two-dimensional modelling of stratified flow in pipes
2004 (English)Doktorsavhandling, sammanläggning (Other scientific)
Abstract [en]

This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface violates the interfacial boundary conditions; therefore special care must be taken at irregular grid nodes.

In this thesis a decomposed immersed interface method is presented. The immersed interface method is a numerical technique formulated to solve partial differential equations in the presence of an interface where the solution and its derivatives may be discontinuous and non-smooth. Componentwise corrections terms are added to the finite difference stencil in order to make the discretization well-defined across the interface. A method that approximates the correction terms is also proposed. Results from numerical experiments show that the rate of convergence is approximately of second order.

Moreover, the immersed interface method is applied to stratified multiphase flow in pipes. The flow is assumed to be fully developed and in steady-state. For turbulent flow, both a low Reynolds number turbulence model and a two-layer turbulence model are adopted in order to imitate turbulence in the flow field and in the vicinity of the boundaries. The latter turbulence model is modified accordingly to account for the effects of a wavy interface. In this case, the concept of interfacial roughness is used to model the wavy nature of the interface.

Numerical results are compared with analytical solutions for laminar flow and experimental data for turbulent flow. It is also demonstrated that the current numerical method offers more flexibility in simulating stratified pipe flow problems with complex shaped interfaces, including three-phase flow, than seen in any previous approach.

Publisher, range
Fakultet for ingeniørvitenskap og teknologi, 2004. 108 p.
Series
Doktoravhandlinger ved NTNU, ISSN 1503-8181 ; 2004:139
Keyword
Energy- and processengineering
Identifiers
urn:nbn:no:ntnu:diva-306 (URN)82-471-6503-1 (ISBN)
Public defence
2004-11-19
Note
Paper I reprinted with kind permission of Elsevier, SciencedirectAvailable from2004-11-19 Created:2004-11-19Bibliographically approved

Open Access in DiVA

No full text

Other links

http://dx.doi.org/10.1016/j.jcp.2003.12.003

Search in DiVA

By author/editor
Berthelsen, PA
By organisation
Department of Energy and Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Citations

Web of Science®:
Total: 14 hits
ReferencesLink to record
Permanent link

Direct link